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The Taylor - Saffman problem concerns the fingering instability which develops 
when one liquid displaces another, more viscous, liquid in a porous medium, or 
equivalently for Newtonian liquids, in a Hele-Shaw cell. Recent experiments with 
Hele-Shaw cells using non-Newtonian liquids have shown striking qualitative 
differences in the fingering pattern, which for these systems branches repeatedly in 
a manner resembling the growth of a fractal. This paper is an attempt to provide the 
beginnings of a hydrodynamical theory of this instability by repeating the analysis 
of Taylor & Saffman using a more general constitutive model. In fact two models are 
considered; the Oldroyd ‘Fluid B’ model which exhibits elasticity but not shear 
thinning, and the Ostwald-de Waele power-law model with the opposite com- 
bination. Of the two, only the Oldroyd model shows qualitatively new effects, in the 
form of a kind of resonance which can produce sharply increasing (in fact unbounded) 
growth rates as the relaxation time of the fluid increases. This may be a partial 
explanation of the observations on polymer solutions ; the similar behaviour reported 
for clay pastes and slurries is not explained by shear-thinning and may involve a 
finite yield stress, which is not incorporated into either of the models considered here. 

1. Introduction 
The Hele-Shaw cell is a well-known device consisting of two parallel glass plates 

separated by a narrow gap. When a viscous liquid flows in the gap the mean velocity 
u is related to the pressure p by the equation 

where h is the plate separation and 7 is the viscosity. This is the same as the equation 
for flow in a porous medium of permeability &h2 and much of the interest in the Hele- 
Shaw cell arises from this fact. 

When the cell contains two immiscible liquids the interface between them is 
unstable when the less viscous fluid displaces the more (gravitational effects being 
left out). This is the subject of the celebrated paper (Taylor & Saffman 1958) from 
which the instability derives its name. A number of questions were left open in that 
paper and much development has taken place ; see, for example, Saffman (1986) and 
Homsy (1987) for recent surveys. 

In  the last few years attention has been drawn to novel effects which can be 
observed when the displaced fluid is non-Newtonian in character. Experiments in 
which a polymer solution is displaced by water have been described by Nittman, 
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Daccord & Stanley (1985) and Daccord & Nittman (1986), and others using clay 
pastes and slurries by Van Damme et al. (1987, 1988) and Daccord & Lenormand 
(1987). Other experiments, using both ideal elastic (Boger) fluids and shear-thinning 
polymer solutions have been reported by Allen & Boger (1988). It was obscrvcd that 
the fingering pattern which develops a t  the interface branches repeatedly in a 
manner which suggests the growth of a fractal. No detailed theory of the interfacial 
instability has been put forward, although there has been some discussion of orders 
of magnitude (de Gennes 1987). The experiments were compared with computer 
simulations of a random walk process by Nittman et al. (1985) and by others : see 
Meakin (1987) for example. 

The connection between the Hele-Shaw flow of a liquid and the flow in a porous 
medium, when the liquid is viscoelastic, is presumably rather remote. However, the 
problem is of intrinsic interest, even if the industrial relevance is absent. 

This paper is an attempt to  provide a hydrodynamical theory, and has the 
straightforward plan of repeating the stability calculations of Taylor & Saffman, 
using a more general constitutive model for the fluid but otherwise following their 
general approach as closely as the additional complications permit. In particular we 
use the same depth-averaged interface conditions, as explained presently. 

It will be supposed that the liquid is displaced by air (that is, a fluid whose 
dynamics may be ignored) along an interface which is initially straight, and the 
stability of this interface to small disturbances will be examined. Taylor & Saffman 
used depth-averaged equations throughout ; that is, they considered the behaviour of 
small disturbances to equations which had already been averaged. This is not feasible 
in the present case because the equations are more intricately coupled, and the 
procedure is as follows. The disturbance equations are derived from the full equations 
and solved subject to  the no-slip conditions on the walls; the approximations of 
lubrication theory are made, on the assumption that the plate separation h is much 
smaller than any other lengthscale of interest. Taylor & Saffman also used depth- 
averaged interface conditions. Considerable effort has been put into refining this, for 
example by Park & Homsy (1984) and by Reinelt (1987); the conclusion is that for 
small capillary numbers Taylor & Saffman were not far wrong, in that a coefficient 
1 should be replaced by an etc. In view of this, and in the absence of any 
corresponding accurate theory of the interface for non-Newtonian fluids, the original 
boundary condition of Taylor & Saffman will be used here. Thus a mean (i.e. depth- 
averaged) kinematic condition and stress balance are imposed. Note that the 
equations of motion are not themselves averaged ; the relevant components of the 
solution are averaged and then used in the interface conditions. This closes the 
problem and determines the growth rate as a function of wavenumber. 

Of course the representation of the flow field as basic parallel flow plus small 
disturbance must fail very close to the interface, probably within a distance of order 
h, and the same is true of Taylor & Saffman’s theory. The idea is that the instability 
is the result of interactions on a lengthscale large compared with h, so that details 
near the meniscus are not important; this places a restriction on the disturbance 
wavelength to which the theory can be expected to apply. 

Non-Newtonian liquids exhibit a t  least two characteristics not present in 
Newtonian liquids, namely elasticity and shear-thinning, and in order to disentangle 
these effects two constitutive models are considered, each of which possesses one 
property but not the other. First is the Oldroyd ‘Fluid B ’ model which shows elasticity 
but constant shear viscosity (although the stress field has more non-zero components 
than a Newtonian liquid). Then we consider the Ostwald-de Waele power-law fluid 
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which shows shear-thinning but is inelastic. Of the two, the Oldroyd model is more 
difficult and more interesting; the presence of elasticity produces the possibility of a 
resonance in the disturbance equations which is excited by the interface conditions. 
According to the theory given here, for suitable values of the model parameters the 
disturbance growth rate becomes unbounded. The power-law fluid behaves more or 
less as a Newtonian fluid; the growth rate of the disturbance is multiplied by k-i, 
where k is the power-law exponent, as compared with the Newtonian case, but there 
is no qualitative change. 

2. The Oldroyd 'Fluid By 
We choose coordinates so that the two plates of the Hele-Shaw cell correspond to 

y = 0 and y = h and in the basic undisturbed flow the liquid moves in the positive 
x-direction. The velocity field of this undisturbed motion has the form (u,(y),O,O) 
and it is supposed that the liquid is displaced by air (or some fluid whose dynamics 
can be neglected) in such a way that the undisturbed interface is the straight line 
x = s t ,  where go is the mean velocity, and the liquid occupies the region x > q, t .  
So as in the original investigation of Taylor & Saffman we are leaving aside any 
complications very close to the meniscus, including the possibility that the liquid is 
not completely displaced. 

To determine u,(y) and the associated stress field we now consider in detail the 
constitutive and force balance equations. This is most conveniently done using 
subscript notation and the summation convention. The coordinates are denoted xi 
and the velocity components ut, and we define 

The constitutive equation is 

where rij is the extra stress tensor and i, (or iij) denotes the corotational derivative, 

with a similar expression for iij. Equation (3) is also known as the upper-convected 
Jeffreys model; for further details see Petrie (1979) or Bird, Armstrong & Hassager 
(1977). We note here that for A, = 0 we recover the well-known and simpler upper- 
convected Maxwell model; and for A ,  = A, we recover the Newtonian model. This 
latter simplification can be observed in the various appearances of equation (3) in the 
analysis below and provides a useful check. 

The stress tensor uij is given by 

Q-.. = -ps..+7. 
a3 $3 21  

and, neglecting inertial effects, the equations of motion are 

a 
axj $3 
-g.. = 0. 
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For the simple unidirectional flow considered here these equations may be solved 
without difficulty. The pressure p is independent of y and z and the pressure gradient 
is a function o f t  only. For simplicity we shall suppose that arrangements are made 
to maintain a constant pressure gradient in the liquid (or equivalently, a constant 
mean flow) so that the pressure p ,  is given by 

po  = G ( x - t ~ , t )  ( ~ - t ~ , t  > 0) (7)  

where G is a (negative) constant. Then we find 

which is the same as for a Newtonian liquid of viscosity 7 ; a t  this point the absence 
of shear-thinning behaviour becomes apparent. There are two non-zero components 
of 7 i j ,  namely 

(75y)o T, = G(y-&), (9) 

and 

Here T, is again the same as for a Newtonian liquid and only the component T,, 

depends on the relaxation time constants A, and A,. Finally the mean velocity U, is 
given by 

ti, = -Gh2/12y. ( 1 1 )  

We turn now to the problem of the stability of this flow. The velocities and stresses 
are written as the sum of the primary quantities as just obtained, which have a 
subscript zero, and small disturbances ; then they are substituted into (1)-(6), which 
are linearized in the usual way. This process is lengthy but straightforward. We defer 
presentation of the results until a suitable choice of dimensionless variables has 
been found and this in turn requires an analysis of the conditions a t  the interface 
x = u,t.  

We write the equation of the perturbed interface as 

x = E,t+'g(z,t). (12) 

The mean velocity is a, +ti, the pressure is p ,  + p  and the relevant component of the 
extra stress is So + 7zx.  Two conditions are to be imposed a t  the interface (12), namely 
the kinematical condition and the condition of continuity of normal stress, both 
averaged with respect to y. 

The kinematical condition, when linearized, becomes 

(13) 
a'g 
at 

a = -  on x = U , t ,  

and the stress condition becomes 

GE+p-T,. = y- 3 2  on x = ti,t, 
a 2 2  

where y is the surface tension of the liquid. (The curvature of the meniscus in the 
(x, y)-plane, and the mean contribution of So, have the effect of adding a constant to 
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the pressure p, ,  which has no effect on the stability and can be left out.) We now 
assume that 

E cc cos (nz) exp L.4, (15) 

p ,  i i, 7,, cc cos (nz) exp (ut+ ax), (16)  

where n is the wavenumber of the disturbance, p and u are the growth rates, to 
be found, and a is the decay rate, which is also to be found, with the restriction 
Re (a) < 0 for acceptable behaviour as x-t  co. From (13) we find 

u+au, = p (17) 

(G+yn2)ii+p(p-7x,) = 0 on 2 =@,t. (18) 

and then may be eliminated to give a single condition, 

From this equation, and from (11) which connects a0 and G, we find t8he appropriate 
lengthscale a for x and z, and the perturbation variables, given by 

a2 = yh2/rao,  (19) 

and the timescale is a/@,. These will be used to form a dimensionless version of (18), 
and also to form dimensionless versions of the constitutive and equilibrium equations 
which will be displayed shortly. 

The choice of scales for the perturbation quantities is as follows. There will be an 
arbitrary constant corresponding to the amplitude of the perturbation and this is 
conveniently taken to be the magnitude of the perturbation to u,, say 0. Then we 
have u, w - 0, v - Ohla. Convenient scales for the stress components are 

P, 7 x 2 ,  T,, - y0alh2 ,  

T,y, 7 y r  - rQh, 

rYy - ?,&/a, 

In  order to avoid cumbersome superscripts we shall now use the letters u, p ,  r etc., 
to denote dimensionless variables, scaled as indicated, and accept the slight risk of 
confusion. So (18) becomes 

(n2- 1 2 ) ~ + p ( p - ~ , , )  = 0. (20) 

The constitutive equations, when linearized, involve the functions u,, T, and So in 
the coefficients, which in turn depend on y ,  and also derivatives with respect to y ,  and 
it is correct to scale y on h. Meanwhile we scale x and z on a as indicated above and 
assume that h < a. This lubrication-type approximation allows certain terms to be 
dropped. We introduce two Weissenberg numbers 

(where the factor 12 is inserted for later numerical convenience), and the operators 
9l and g2, given by 

These are the linearized versions of the operators 1 + A,. , D/Dt, which appear in (3). 

9 1 . 2  = 1 + h w , , ( a + 6 4 Y - Y 2 ) ) .  (22) 
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Thus we obtain 

The equilibrium equations become 

aP a a a 
ax ax ay aZ -_ +-T,,+-Txy+-Tx, = 0: 

and finally there is the continuity equation 

au av  aw 
ax ay a Z  
-+-+- = 0. 

In  all the equations (23)-(31) we should of course now assume a form of disturbance 
similar to (16), namely 

p ,  rXx ,  T ~ ~ ,  T ~ ~ ,  u, v cc cos nz exp (ut + ax), 
T,,, T ~ , ,  w cc sin n z  exp (ut + ax). 

In  this way we obtain a set of ordinary differential equations, with y as the 
independent variable, subject to the usual no-slip conditions 

u = v = w = O  on y = O , l .  (33) 
A numerical solution appears to be necessary and the procedure is as follows. The 

system is effectively of order 6, since y-derivatives can be eliminated from (say) (23), 
(25) and (26). We can choose the wavenumber n arbitrarily (and W, and W2 of course) ; 
then the system contains two unknown parameters, u and u. The imposition of (33) 
is equivalent to an equation connecting u and a, and a second such equation arises 
from the interface condition (20), which uses averages of course. The two equations 
in the two unknowns u and a must be solved numerically ; however, the linearity of 
the system makes this whole numerical task fairly straightforward. 
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n 

FIGURE 1. Growth rate of disturbance, p ,  against wavenumber n, for various values of 
W, = 12A,ti,,/a, with W, = 0. The scales for p and n are ao/a and l / a  respectively. 

I n  the event the numerical solutions all showed a remarkable simplification ; it was 
found in every case that 

a = - n  , 21 = 0, u = w, Tyy = 0, Txy = Tyzr r,, = 27,,. (34) 

Using (34) we can obtain a reduced set of equations, 

(35) 
du 

gl rXy+ (Wl- W,) (t- y) nu = 9,-, 
dY 

du 
g1 T,, = Wl(+-y) T,~- 2W1(W, - W,) ( ~ - 4 ) ~  nu + (W, - 2W2) (t- y) -, 

dY 
(37) 

corresponding to  (23)-(30). This is still not quite enough to make an analytical 
solution possible but it makes the numerical solution much easier, mainly because a 
has been determined (equal to -n) and the root-finding procedure is only one- 
dimensional. It has not been proved that other types of solution are impossible ; but 
none were found. 

We begin by considering the special case W, = 0, corresponding to the upper- 
convected Maxwell model. The results are shown in figure 1.  This gives graphs of the 
dimensionless growth rate ,u (the growth rate of the interface disturbance, cf. (15)) 
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FIGURE 2. The longitudinal stress T,, against y for the case W = 2.5, n = 2.5. (The eigensolution 
has been normalized so that p = 1 . )  

against dimensionless wavenumber n,  for various values of W,. In the case W, = 0 we 
recover the Taylor-Saffman result 

p = n-&n3, (39) 

with the maximum growth rate a t  n = 2. As W, increases we find a slight shift in the 
most unstable wavenumber and a very sharp increase in maximum growth rate ; this 
occurs a t  rather small values of W,, recalling that there is a factor 12 in the definition. 

This effect can be traced to a kind of resonance. Equations (35) ,  (36) and (37) can 
be reduced (in this case) to 

Of course this system alone is not sufficient to determine t~ (or p) since the interface 
condition (20) must be used. But the solution for u will become unbounded when nW, 
is close to an eigenvalue of the operator in (40)  ; this eigenvalue (more precisely, the 
first eigenvalue) was found numerically to be nW, = 16.05 approximately. The 
combination nW, is independent of a and is in fact equal to 1 2 4  tion*, where n* is the 
dimensional wavenumber. Thus the resonance occurs when A, fio n* z 1 and, since 
a = -n ,  this means that the relaxation time of the fluid is comparable with the time 
taken to pass through the region in which the perturbation has significant amplitude. 

The values of nW, corresponding to the results in figure 1 are not particularly close 
to 16.05 (they were about 6 or 7 a t  most) but large values of u were obtained. For 
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FIGURE 3. Growth rate of disturbance, p ,  against wavenumber n, for various values of 
T = WJW,, with W, = 2.5. Scales as in figure 1. 

P 

example at W, = 2.5,n = 2.5 it was found that u is about 8 times as large as for 
W, = 0, n = 2.5. This produces a large value of E and hence a large value of ,IX) as can be 
seen from (20). Another feature of the solution which has the same tendency is the 
appearance of the mean viscous stress term Fzx in (20). This was always positive; so 
this tensile stress reduces the effect of the disturbance pressure p and increases p. In 
fact the numerical solutions for n close to (12); sometimes showed p - F,, changing 
sign ; but this singularity is probably a spurious effect of the averaging process since 
r,, showed a boundary-layer structure in those cases, with large values near the walls 
and small values on the centre of the channel. An example is shown in figure 2. 

Now we turn to the effect of the second ti.me constant A,. When A, is non-zero the 
growth rates are reduced and the singularity a t  nW, z 16.05 is (apparently) removed. 
Sample results are shown in figure 3. This shows the growth rate p against n, with 
W, = 2.5, for various values of the ratio r = W,/W,. Thus the curve r = 0 is the same 
as the upper curve of figure 1, and the curve r = 1 (for which the Newtonian case is 
recovered) is the same as the lowest curve of figure 1. Further numerical experiments 
were carried out at fixed values of r with increasing values of W, with similar results. 
No resonance was found, although numerical difficulties were encountered a t  large W, 
which were associated with spurious (unphysical) solutions generated by the root- 
finding routine. 

This may be related to the existence of a critical extension rate for the Maxwell 
model (Petrie 1979, p. 43). In simple uniaxial extension, the stress become infinite a t  
a certain extension rate; the singularity is shifted, but not removed, by the 
incorporation of the extra terms in the Jeffreys model (or Oldroyd ‘B’ model). 
Another possibility is that the Maxwell fluid is instantaneously elastic, that is, the 
relaxation modulus is finite, whereas the Jeffreys (or Oldroyd) model incorporates a 
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Newtonian element resulting in infinite instantaneous rigidity. These ideas have been 
thoroughly discussed by Joseph, Narain & Riccius (1986). It is hoped to pursue these 
questions further in the context of a study of some simpler stability problems, where 
there is less uncertainty about the extent to which the results are model-dependent. 

3. The Ostwald-de Waele power-law model 

we use the much simpler constitutive relation 
The procedure here is essentially the same as in the previous section except that 

rij = 27eij (41) 

with 7 = m(2e, e i , ) t (k - l ) ,  (42) 

where m and k are constants; usually k d 1. The Newtonian case is recovered by 
setting k = 1. 

First we solve for the basic parallel flow, and as before we can put 

p o  = G ( x - ~ , t )  (X-cot) > 0,  (43) 

where G is a (negative) constant, and we find 

where 
k +  1 K = -  
k 

The mean velocity is therefore given by 

(45) 

Now we linearize the equations about this basic flow, using u, v, w, p etc. to denote 
perturbation quantities as before. It is necessary to expand (42) of course and it is 
convenient to denote the (variable) shear viscosity corresponding to the basic 
velocity field (44) by q0,  where 

After a lengthy reduction and after use of the lubrication approximation, the 
equations of motion can be written 
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The boundary conditions are 

u = w = O  on y = O , h  (51) 

and the interface condition (14) holds, although r,, is zero in the present case. We can 
look for solutions having the forms 

I ,  = } cos nz exp (at + ax), 
= U(Y) 

w = w(y)sinnzexp(ut+az), 

where P is a constant. Then (48) and (50) can be solved to give 

A connection between a and n may be established by means of the averaged 
continuity equation 

the overbar denoting a mean value over 0 < y < h. Thus a2 = kn2 or, since we require 
a < 0 for solutions decaying a t  x + 00, 

aa+nm = 0, (54) 

a = -nki. (55) 

It remains to evaluate a and substitute into (18) (with Txs = 0) to determine the 
growth rate p. We can make this dimensionless in the same way as in the previous 
section, using the formula (46) for uo instead of (11)  to define the length- and 

(56) 
timescales, and there results 

p = k A ( 1  -h2), 
where the variables are now dimensionless. This may be compared with (39) which 
is of course recovered on setting k = 1. 

4. Concluding remarks 
No direct comparison between the experiments and the present theory is possible 

because very little is known about the rheological behaviour of the fluids discussed, 
and the constitutive models used here may have little resemblance to the real thing. 
The clay pastes are considered by Van Damme et al. (1987) to be shear thinning with 
a yield stress, and estimates of the parameters are given. They are also described as 
elastic, although this seems unlikely, and no relaxation time is given. The power-law 
model considered here gives no hint of the behaviour observed by Van Damme et al. 
(1987) or Allen & Boger (1988) ; this may be due to the assumption of zero yield stress 
in (42). A non-zero yield stress may well give markedly different results because 
ahead of the more slowly advancing parts of the interface the fluid could actually be 
brought to rest. But it is hard to see how this could be dealt with by a linearized 
theory, since in the undisturbed flow the tangential stress near the walls would have 
to exceed the yield stress by a finite amount, and this would still hold after an 
infinitesimal disturbance. More effort should no doubt be put into this line of inquiry. 
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K O  0.5 1.0 1.5 2.0 2.5 3.0 3.5 4 4.5 5 
p 1.0 1.23 1.54 1.97 2.58 3.46 4.78 6.91 10.91 21.10 105.06 

TABLE 1. Growth rate p against W, for the case of zero surface tension. The scale for ,u is @,,n 
where n is the dimensional wavenumber, and W, = 12A1 B, n 

The systems involving water and aqueous polymer solutions (Nittman et al. 1985) 
had (deliberately) zero or very low interfacial tension, for which the scalings of the 
previous sections are not appropriate, because a = 0. The only available lengthscale, 
when y = 0, is the wavelength of the disturbance. It is not difficult to rescale the 
equations, using n-l as the unit of length, and the effect is to produce a system of 
equations identical to (35)-(38) except that n is replaced by 1 and the Weissenberg 
numbers Wl,2 are defined by 

Wl,2 = 12h1,,a,,n. 

The interface condition becomes 

- 12a+p(p-F5,,) = 0. 

The value of the growth rate p against W, for the case W, = 0 is indicated in table 1.  
For W, = 0 we recover the Taylor-Saffman result ,u = 1 ,  but as W, increases there is 
a very sharp increase in p. This is the counterpart of figure 1. 

It may be that this partially explains the rapid fingering observed by Nittman 
et al. (1985). The validity of the lubrication approximation and of the averaging 
leading to (20) require that nh/27c < 1 and so no explanation of very fine structure 
is possible; however, in the experiments this condition appears to  be satisfied. 

Recent experiments using two Newtonian liquids, reported by Chen (1989), show 
marked differences in the fingering pattern according to whether the liquids are 
miscible or not. The branching occurs on a much finer scale for miscible systems, 
which have zero interfacial tension, as might be expected. On the other hand Allen 
& Boger (1988) conclude that the distinctive fingering pattern is due to shear 
thinning, since the Boger fluids did not differ greatly in their response from 
Newtonian fluids of similar shear viscosity. 

In the light of these observations and the present calculations we might conclude 
that a major influence on the fingering pattern is the presence or absence of 
significant interfacial tension. Shear thinning appears to have no great effect 
although a more refined model than the present one may be required, as noted above. 
An elastic liquid need not differ greatly from a Newtonian liquid, but may show a 
marked increase in the growth rate of disturbances (but not much effect on the 
wavelength) if, for the Oldroyd ‘B’ fluid, W, is large and W, is small. This means that 
fluids which have similar values of the steady shear viscosity but differ in their 
instantaneous rigidity should behave differently ; this interesting effect should be 
observable experimentally. 
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